Category: Zipking

Zipkin is a distributed tracing system that helps visualize and analyze the performance and latency of microservices-based applications.

  • How to Launch Zipkin and Sentry in a Local Kind Cluster Using Terraform and Helm

    In modern software development, monitoring and observability are crucial for maintaining the health and performance of applications. Zipkin and Sentry are two powerful tools that can be used to track errors and distributed traces in your applications. In this article, we’ll guide you through the process of deploying Zipkin and Sentry on a local Kubernetes cluster managed by Kind, using Terraform and Helm. This setup provides a robust monitoring stack that you can run locally for development and testing.

    Overview

    This guide describes a Terraform project designed to deploy a monitoring stack with Sentry for error tracking and Zipkin for distributed tracing on a Kubernetes cluster managed by Kind. The project automates the setup of all necessary Kubernetes resources, including namespaces and Helm releases for both Sentry and Zipkin.

    Tech Stack

    • Kind: A tool for running local Kubernetes clusters using Docker containers as nodes.
    • Terraform: Infrastructure as Code (IaC) tool used to manage the deployment.
    • Helm: A package manager for Kubernetes that simplifies the deployment of applications.

    Prerequisites

    Before you start, make sure you have the following installed and configured:

    • Kubernetes cluster: We’ll use Kind for this local setup.
    • Terraform: Installed on your local machine.
    • Helm: Installed for managing Kubernetes packages.
    • kubectl: Configured to communicate with your Kubernetes cluster.

    Project Structure

    Here are the key files in the project:

    • provider.tf: Sets up the Terraform provider configuration for Kubernetes.
    • sentry.tf: Defines the Terraform resources for deploying Sentry using Helm.
    • zipkin.tf: Defines the Kubernetes resources necessary for deploying Zipkin.
    • zipkin_ingress.tf: Sets up the Kubernetes Ingress resource for Zipkin to allow external access.
    Example: zipkin.tf
    resource "kubernetes_namespace" "zipkin" {
      metadata {
        name = "zipkin"
      }
    }
    
    resource "kubernetes_deployment" "zipkin" {
      metadata {
        name      = "zipkin"
        namespace = kubernetes_namespace.zipkin.metadata[0].name
      }
    
      spec {
        replicas = 1
    
        selector {
          match_labels = {
            app = "zipkin"
          }
        }
    
        template {
          metadata {
            labels = {
              app = "zipkin"
            }
          }
    
          spec {
            container {
              name  = "zipkin"
              image = "openzipkin/zipkin"
    
              port {
                container_port = 9411
              }
            }
          }
        }
      }
    }
    
    resource "kubernetes_service" "zipkin" {
      metadata {
        name      = "zipkin"
        namespace = kubernetes_namespace.zipkin.metadata[0].name
      }
    
      spec {
        selector = {
          app = "zipkin"
        }
    
        port {
          port        = 9411
          target_port = 9411
        }
    
        type = "NodePort"
      }
    }
    Example: sentry.tf
    resource "kubernetes_namespace" "sentry" {
      metadata {
        name = var.sentry_app_name
      }
    }
    
    resource "helm_release" "sentry" {
      name       = var.sentry_app_name
      namespace  = var.sentry_app_name
      repository = "https://sentry-kubernetes.github.io/charts"
      chart      = "sentry"
      version    = "22.2.1"
      timeout    = 900
    
      set {
        name  = "ingress.enabled"
        value = var.sentry_ingress_enabled
      }
    
      set {
        name  = "ingress.hostname"
        value = var.sentry_ingress_hostname
      }
    
      set {
        name  = "postgresql.postgresqlPassword"
        value = var.sentry_postgresql_postgresqlPassword
      }
    
      set {
        name  = "kafka.podSecurityContext.enabled"
        value = "true"
      }
    
      set {
        name  = "kafka.podSecurityContext.seccompProfile.type"
        value = "Unconfined"
      }
    
      set {
        name  = "kafka.resources.requests.memory"
        value = var.kafka_resources_requests_memory
      }
    
      set {
        name  = "kafka.resources.limits.memory"
        value = var.kafka_resources_limits_memory
      }
    
      set {
        name  = "user.email"
        value = var.sentry_user_email
      }
    
      set {
        name  = "user.password"
        value = var.sentry_user_password
      }
    
      set {
        name  = "user.createAdmin"
        value = var.sentry_user_create_admin
      }
    
      depends_on = [kubernetes_namespace.sentry]
    }

    Configuration

    Before deploying, you need to adjust the configurations in terraform.tfvars to match your environment. This includes settings related to Sentry and Zipkin. Additionally, ensure that the following entries are added to your /etc/hosts file to map the local domains to your localhost:

    127.0.0.1       sentry.local
    127.0.0.1       zipkin.local

    Step 1: Create a Kind Cluster

    Clone the repository containing your Terraform and Helm configurations, and create a Kind cluster using the following command:

    kind create cluster --config prerequisites/kind-config.yaml

    Step 2: Set Up the Ingress NGINX Controller

    Next, set up an Ingress NGINX controller, which will manage external access to the services within your cluster. Apply the Ingress controller manifest:

    kubectl apply -f https://raw.githubusercontent.com/kubernetes/ingress-nginx/main/deploy/static/provider/kind/deploy.yaml

    Wait for the Ingress controller to be ready to process requests:

    kubectl wait --namespace ingress-nginx \
      --for=condition=ready pod \
      --selector=app.kubernetes.io/component=controller \
      --timeout=90s

    Step 3: Initialize Terraform

    Navigate to the project directory where your Terraform files are located and initialize Terraform:

    terraform init

    Step 4: Apply the Terraform Configuration

    To deploy Sentry and Zipkin, apply the Terraform configuration:

    terraform apply

    This command will provision all necessary resources, including namespaces, Helm releases for Sentry, and Kubernetes resources for Zipkin.

    Step 5: Verify the Deployment

    After the deployment is complete, you can verify the status of your resources by running:

    kubectl get all -A

    This command lists all resources across all namespaces, allowing you to check if everything is running as expected.

    Step 6: Access Sentry and Zipkin

    Once the deployment is complete, you can access the Sentry and Zipkin dashboards through the following URLs:

    These URLs should open the respective web interfaces for Sentry and Zipkin, where you can start monitoring errors and trace requests across your applications.

    Additional Tools

    For a more comprehensive view of your Kubernetes resources, consider using the Kubernetes dashboard, which provides a user-friendly interface for managing and monitoring your cluster.

    Cleanup

    If you want to remove the deployed infrastructure, run the following command:

    terraform destroy

    This command will delete all resources created by Terraform. To remove the Kind cluster entirely, use:

    kind delete cluster

    This will clean up the cluster, leaving your environment as it was before the setup.

    Conclusion

    By following this guide, you’ve successfully deployed a powerful monitoring stack with Zipkin and Sentry on a local Kind cluster using Terraform and Helm. This setup is ideal for local development and testing, allowing you to monitor errors and trace requests across your applications with ease. With the flexibility of Terraform and Helm, you can easily adapt this configuration to suit other environments or expand it with additional monitoring tools.

  • An Introduction to Zipkin: Distributed Tracing for Microservices

    Zipkin is an open-source distributed tracing system that helps developers monitor and troubleshoot microservices-based applications. It provides a way to collect timing data needed to troubleshoot latency problems in microservices architectures, making it easier to pinpoint issues and understand the behavior of distributed systems. In this article, we’ll explore what Zipkin is, how it works, and why it’s a crucial tool for monitoring and optimizing microservices.

    What is Zipkin?

    Zipkin was originally developed by Twitter and later open-sourced to help track the flow of requests through microservices. It allows developers to trace and visualize the journey of requests as they pass through different services in a distributed system. By collecting and analyzing trace data, Zipkin enables teams to identify performance bottlenecks, latency issues, and the root causes of errors in complex, multi-service environments.

    Key Concepts of Zipkin

    To understand how Zipkin works, it’s essential to grasp some key concepts in distributed tracing:

    1. Trace: A trace represents the journey of a request as it travels through various services in a system. Each trace is made up of multiple spans.
    2. Span: A span is a single unit of work in a trace. It represents a specific operation, such as a service call, database query, or API request. Spans have a start time, duration, and other metadata like tags or annotations that provide additional context.
    3. Annotations: Annotations are timestamped records attached to spans that describe events of interest, such as when a request was sent or received. Common annotations include “cs” (client send), “cr” (client receive), “sr” (server receive), and “ss” (server send).
    4. Tags: Tags are key-value pairs attached to spans that provide additional information about the operation, such as HTTP status codes or error messages.
    5. Trace ID: The trace ID is a unique identifier for a particular trace. It ties all the spans together, allowing you to see the entire path a request took through the system.
    6. Span ID: Each span within a trace has a unique span ID, which identifies the specific operation or event being recorded.

    How Zipkin Works

    Zipkin operates in four main components: instrumentation, collection, storage, and querying. Here’s how these components work together to enable distributed tracing:

    1. Instrumentation: To use Zipkin, your application’s code must be instrumented to generate trace data. Many libraries and frameworks already provide Zipkin instrumentation out of the box, making it easy to integrate with existing code. Instrumentation involves capturing trace and span data as requests are processed by different services.
    2. Collection: Once trace data is generated, it needs to be collected and sent to the Zipkin server. This is usually done via HTTP, Kafka, or other messaging systems. The collected data includes trace IDs, span IDs, annotations, and any additional tags.
    3. Storage: The Zipkin server stores trace data in a backend storage system, such as Elasticsearch, Cassandra, or MySQL. The storage system needs to be capable of handling large volumes of trace data, as distributed systems can generate a significant amount of tracing information.
    4. Querying and Visualization: Zipkin provides a web-based UI that allows developers to query and visualize traces. The UI displays traces as timelines, showing the sequence of spans and their durations. This visualization helps identify where delays or errors occurred, making it easier to debug performance issues.

    Why Use Zipkin?

    Zipkin is particularly useful in microservices architectures, where requests often pass through multiple services before returning a response. This complexity can make it difficult to identify the source of performance issues or errors. Zipkin provides several key benefits:

    1. Performance Monitoring: Zipkin allows you to monitor the performance of individual services and the overall system by tracking the latency and duration of requests. This helps in identifying slow services or bottlenecks.
    2. Error Diagnosis: By visualizing the path of a request, Zipkin makes it easier to diagnose errors and determine their root causes. You can quickly see which service or operation failed and what the context was.
    3. Dependency Analysis: Zipkin helps map out the dependencies between services, showing how they interact with each other. This information is valuable for understanding the architecture of your system and identifying potential points of failure.
    4. Improved Observability: With Zipkin, you gain better observability into your distributed system, allowing you to proactively address issues before they impact users.
    5. Compatibility with Other Tools: Zipkin is compatible with other observability tools, such as Prometheus, Grafana, and Jaeger, allowing you to create a comprehensive monitoring and tracing solution.

    Setting Up Zipkin

    Here’s a brief guide to setting up Zipkin in your environment:

    Step 1: Install Zipkin

    You can run Zipkin as a standalone server or use Docker to deploy it. Here’s how to get started with Docker:

    docker run -d -p 9411:9411 openzipkin/zipkin

    This command pulls the Zipkin image from Docker Hub and starts the Zipkin server on port 9411.

    Step 2: Instrument Your Application

    To start collecting traces, you need to instrument your application code. If you’re using a framework like Spring Boot, you can add Zipkin support with minimal configuration by including the spring-cloud-starter-zipkin dependency.

    For manual instrumentation, you can use libraries like Brave (for Java) or Zipkin.js (for Node.js) to add trace and span data to your application.

    Step 3: Send Trace Data to Zipkin

    Once your application is instrumented, it will start sending trace data to the Zipkin server. Ensure that your application is configured to send data to the correct Zipkin endpoint (e.g., http://localhost:9411).

    Step 4: View Traces in the Zipkin UI

    Open a web browser and navigate to http://localhost:9411 to access the Zipkin UI. You can search for traces by trace ID, service name, or time range. The UI will display the traces as timelines, showing the sequence of spans and their durations.

    Step 5: Analyze Traces

    Use the Zipkin UI to analyze the traces and identify performance issues or errors. Look for spans with long durations or error tags, and drill down into the details to understand the root cause.

    Conclusion

    Zipkin is an invaluable tool for monitoring and troubleshooting microservices-based applications. By providing detailed visibility into the flow of requests across services, Zipkin helps developers quickly identify and resolve performance bottlenecks, latency issues, and errors in distributed systems. Whether you’re running a small microservices setup or a large-scale distributed application, Zipkin can help you maintain a high level of performance and reliability.